

CCU-CCUS Innitiatives in Pertamina

Presented in CCUS Technical Workshop – ERIA

Dewi Mersitarini, Advisor II-Lead CCUS Research and Technology Innovation PT. Pertamina (Persero)

October 7, 2021

CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

Pertamina's ESG Strategy to Ensure Environment Sustainability

Priority for Pertamina to define a long term climate ambition and long term energy transition strategy

Addressing Climate Change

- Reducing Environment Footprint
- Protecting Biodiversity

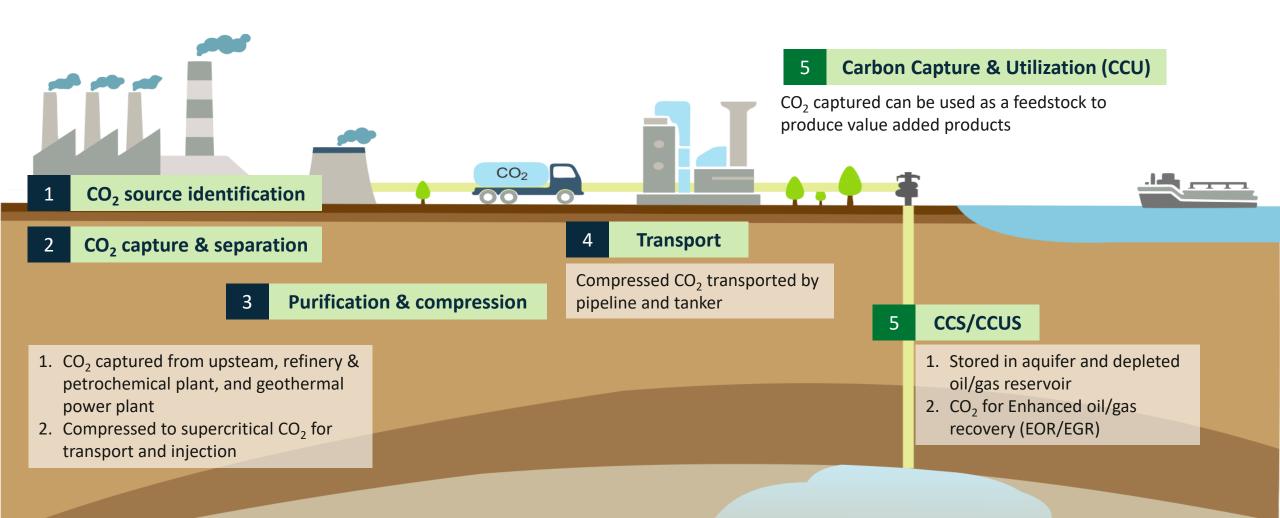
Top Material Issues and Ambitions

- Health & Safety
- Prevention of Major Accidents
- Community Engagement & Impact
- Employee Recruiting, Development & Retention

- Corporate Ethics
- Cyber Security

ESG Strategy across Material IssuesInitiativesInitiatives to meet the ambitionsPoliciesAlign policies to achieve and embed ESG practiceManagement SystemIntegrated system to track performanceDisclosuresSharing achievements with stakeholders

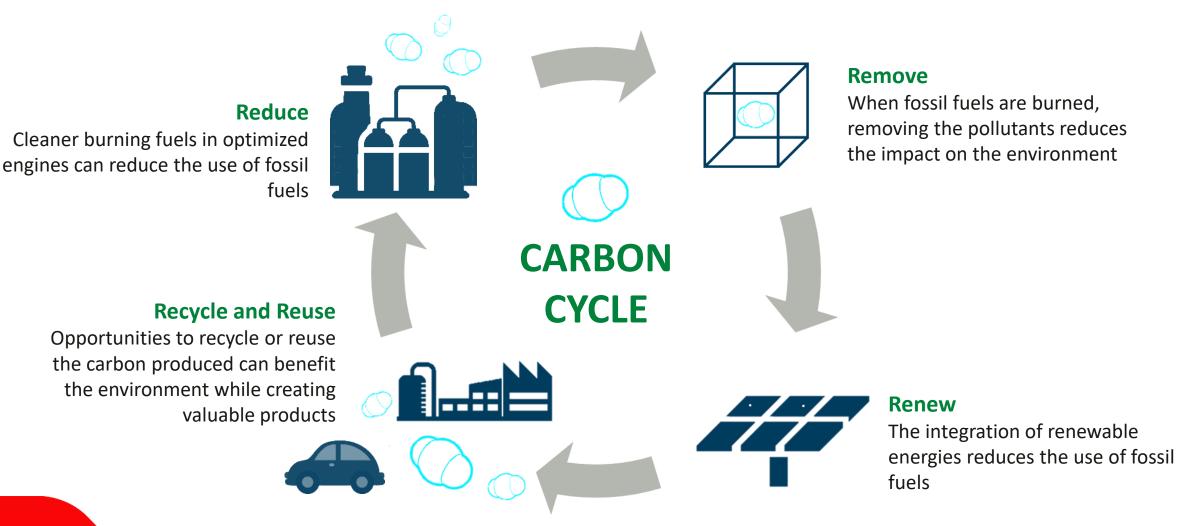
Deep dive



CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

CCS/CCUS Value Chain Development

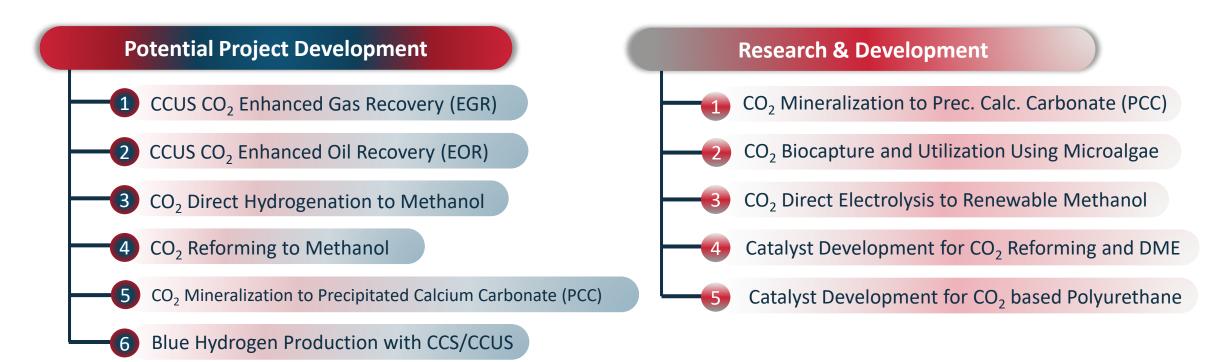
CCUS is essential to unlock the full potential of decarbonization



RTAMINA

Circular Carbon Economy

A circular carbon economy is a framework for managing and reducing emissions. Pertamina have adopted the circular carbon economy framework as a way to reduce their carbon footprints

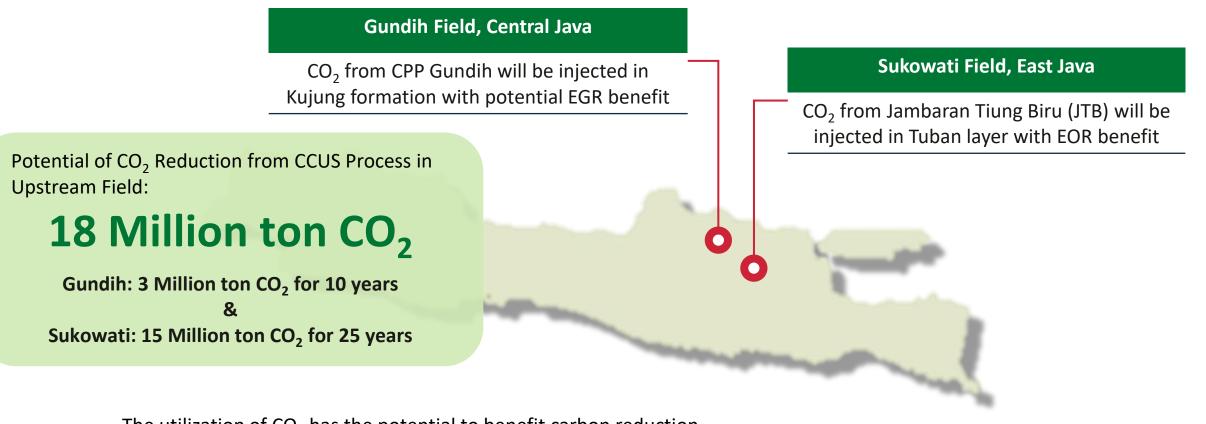


CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

Pertamina's CCUS Technology Development

Future Potential Breakthrough Project

Large Industrial CCS / CCUS Technology Hubs & Clusters


- 1. In Situ CO₂ Source and CO₂ Storage Location
- 2. Cross boundaries CO₂ Source and CO₂ Storage Location
- * Required multi stakeholder collaboration and storage location can be in offshore or onshore

CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

CCS/CCUS Study and Implementation

Joint Crediting Mechanisme (JCM) scheme covered by Government to Government (G2G) between Indonesia and Japan Government

The utilization of CO₂ has the potential to benefit carbon reduction

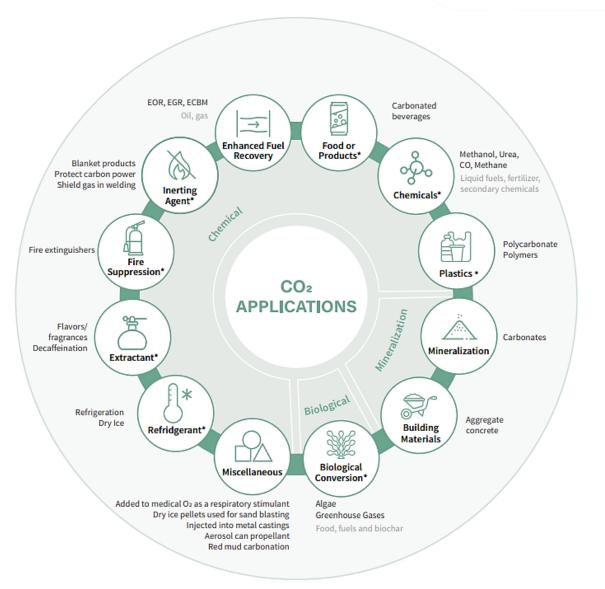
- Potential enhanced hydrocarbon production
- Stored CO₂ will be monetized in Carbon market, after fulfill NDC contribution

CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

CO₂ Utilization

Carbon utilization is the use of CO₂ to create products with economic value

Chemicals


CO₂ is currently used in small quantities to make urea fertiliser and some special polymers. In a future hydrogen economy, CO₂ could be combined with H₂ to make synthetic fuels, syngas and methanol. Syngas and methanol are basic chemical feedstock from which many chemicals and polymers can be made

Biological

CO₂ is used to promote plant growth and can be captured in soils by using biochar to increase soil quality

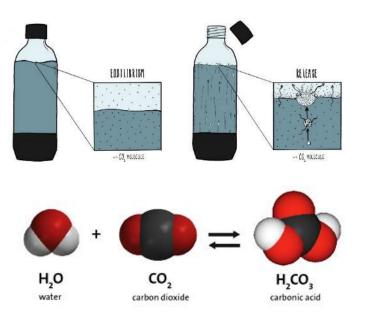
Mineralization

Incorporating CO₂ into concrete has the most potential to become a large market for CO_2 in the near term. This process is energy efficient using minimal external energy

CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

www.pertamina.com

Source: **UNECE** Carbon Capture Use and Storage



Conventional CO₂ Utilization

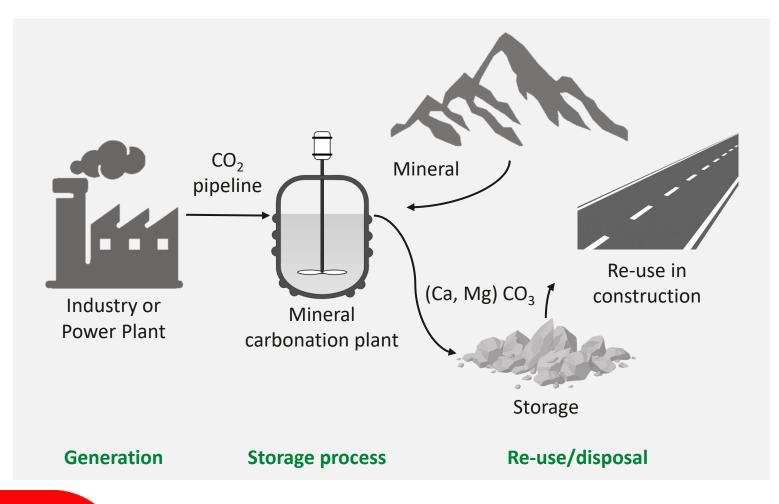
Carbonate Drinks

The water will have absorbed as much CO_2 as it can. Chemists call this an equilibrium. Fizzy drinks do release carbon dioxide (CO_2), a can of pop contains 2-3 g of CO_2

Carbonic acid (H_2CO_3) also has a mild antibiotic effect that prevents bacteria from growing in the water

Dry Ice (CO₂) as cooling agent

The carbon dioxide-rich gas is pressurized and refrigerated until it liquefies. Next, the pressure is reduced. As a result, the extreme cold causes the liquid to solidify into a snow-like consistency. Finally, the snow-like solid carbon dioxide is compressed into small pellets or larger blocks of dry ice ^[a]


CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

www.pertamina.com
Source:
[a] https://www.cryonomic.com/en/dry-ice-process

CO₂ to Mineralization

Mineralization of carbon dioxide (CO_2) , or mineral carbonation, involves the reaction of CO_2 with materials containing alkaline-earth oxides like magnesium oxide (MgO) and calcium oxide (CaO)

Mineral Carbonation Reaction: $MO + CO_2 \rightarrow MCO_3 + Heat$

(Where M is a divalent metal, e.g. calcium, magnesium, or iron)

Mineral Carbonation Uses Precipitated Calcium Carbonate (PCC):

- Paper Industry
- Paint Industry
- Tire Industry
- Pharmacy Industry
- Cosmetics Industry
- Food Industry
- Potential as a PCC technology licensor

ERTAMINA

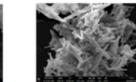
CO₂ Capture and Utilization to Precipitated Calcium Carbonate (PCC)

PCC with Calcite Structure

- Background : CO₂ utilization through mineralization route requires much lower energy compare to other method
- Research Objective : Reducing CO₂ emission while utilizing it and creating efficient PCC production process

[Lab. Scale Reactor]

[Pilot Plant with Capacity 2 Kg/H]


Field Test in Subang Field, Demo Plant Development 20 kg/h (2022-2024)

PCC Production Process:

$CaO + NH_4Cl + CO_2 \rightarrow CaCO_3 + NH_4Cl$

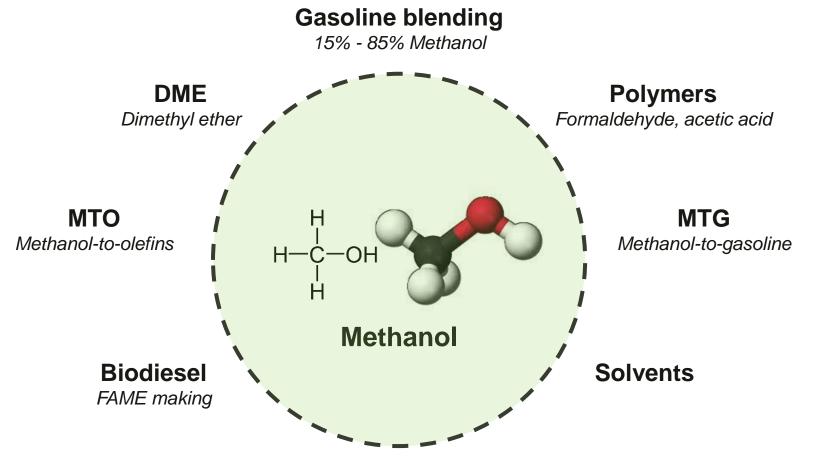
Precipitated Calcium Carbonate (PCC)

PCC with Aragonite Structure

Achievements:

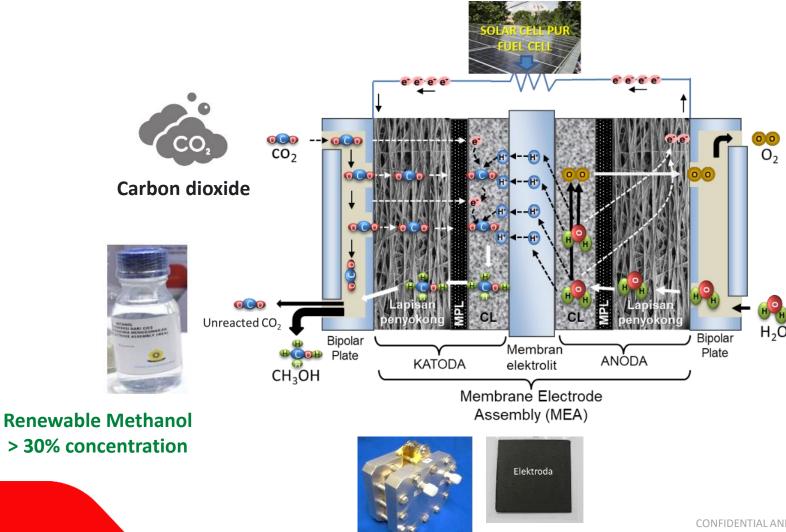
- High purity CaCO₃ >99%
- CO₂ conversion up to 70%
- NH₄Cl as a solvent to increase CaO solubility
- Aragonite structure PCC product for high grade

CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.


PERTAMINA

Uses of Methanol

Methanol occupies a critical position in the chemical industry, as a highly versatile building block for the manufacture of countless everyday products


Methanol is one of the four critical basic chemicals – alongside ethylene, propylene and ammonia – used to produce all other chemical products

CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

CO₂ Capture and Utilization to Renewable Methanol

Power to Liquid (PtL) to convert renewable energy to liquid fuels and chemicals using Membrane Electrode Assembly (MEA)

Renewable Energy source for electrolysis

Electricity from renewable sources is available, hydrogen is produced from water electrolysis

Hydrogen combined with carbon dioxide then converted into renewable methanol

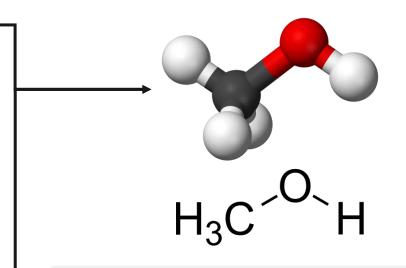
CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

PERTAMINA

CO₂ Capture and Utilization to Methanol

Pertamina Business Initiative in developing CO₂ based chemicals and fuels through applied technology implementation

Green Methanol


- CO₂ sourced from non-condensable gas as a content of steam
- H₂ produced by electrolysis of water using renewable electricity

$CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$

Blue Methanol

- CO₂ reforming of methane
 CO₂ and CH₄ sourced from upstream
 - $CO_2 + CH_4 + low steam \rightarrow Syngas \rightarrow CH_3OH$
- CO₂ from refinery field and H₂ produced by electrolysis of water using renewable electricity or hydrogen recovery

Methanol

Methanol for gasoline blending (Up to 15% methanol) & Support FAME Industry

www.pertamina.com

Upstream & Refinery

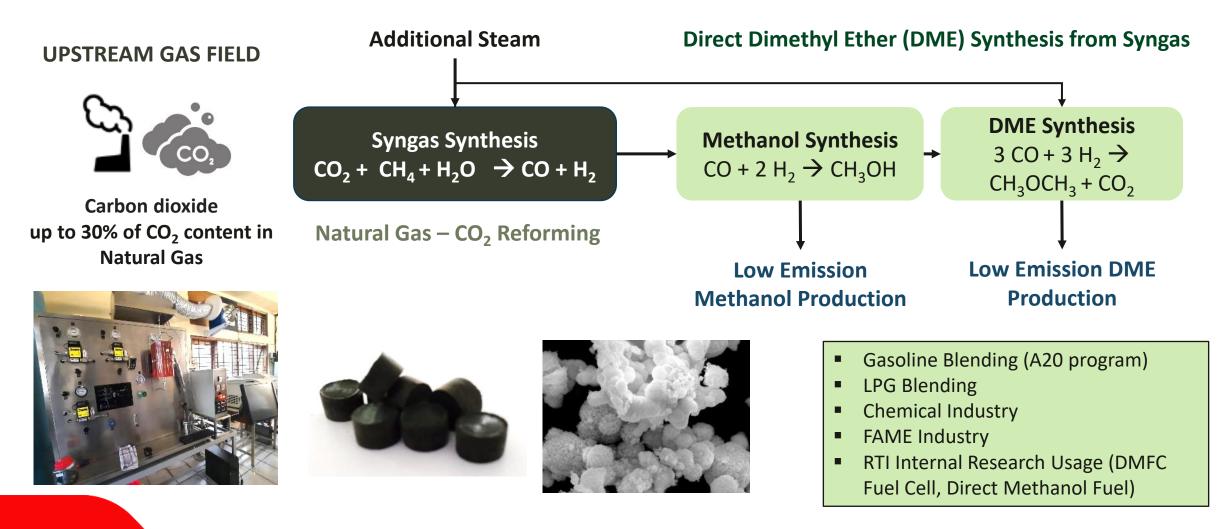
<u>Seothermal Field</u>

Natural gas with High CO₂ Utilization

CO₂ as feedstock integrated with NG conversion process (NG-CO₂ reforming) to produce high value-added products

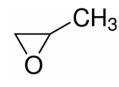
Steam reforming of methane combined with CO₂ or commonly referred to as CO₂ reforming of methane

Steam reforming $CH_4 + H_2O \rightarrow 3 H_2 + CO$	CO_2 reforming (with Less Steam) $CH_4 + CO_2 \rightarrow 2 H_2 + 2 CO$		
H ₂ : CO = 3 : 1	H ₂ : CO = 2 : 1	$H_2: CO = 1:1$	H ₂ : CO = Less 1
Hydrogen	FT Synthesis (Jet/Diesel Fuel)	Oxo Alcohol	Acetic acid
	Ethylene glycol	Other chemicals	Dimethyl ether (DME)
METHANOL		More CO ₂ utilized	
			of this material without specific permission of

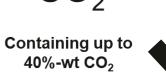

CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

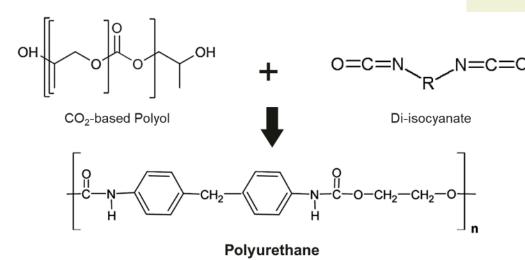
Catalyst Development for CO₂ Reforming & Direct DME

Catalyst development based of Cobalt – Nickel (Co-Ni) and Copper (Cu) to produce DME from natural gas


CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

CO₂ based Polyols for Polyurethane Synthesis


Polyurethane made from CO₂-based polyol and di-isocyanate


Propylene oxide (PO)

&

o ∠∖

Ethylene oxide (EO)

Coatings – a high degree of hardness while maintaining sufficient flexibility *Coil, can, automotive, plastic, wood, textile or leather coatings*

Adhesives & sealants

Flexible packaging adhesives, reactive hot melts, structural adhesives, and used in many applications

Elastomers

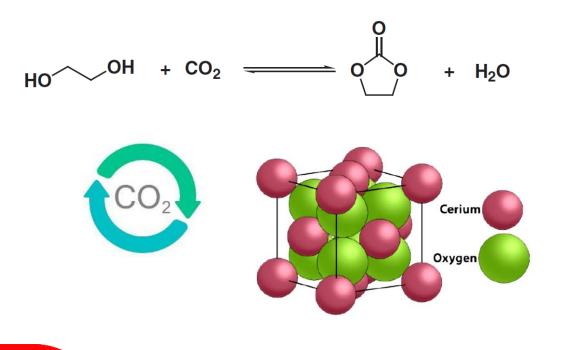
Thermoplastic polyurethane Toys, medical application, automotive, etc.

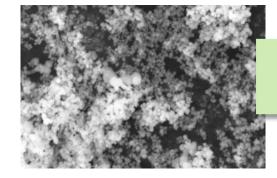
Polyols synthesis by reaction of CO₂ with epoxides (ethylene oxide and propylene oxide)

CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

16

www.pertamina.com


CO₂-based Polyol as an intermediate product for Polyurethane synthesis


Catalyst Development for CO₂ Utilization to Polymer

By reaction of non-isocyanate polyurethane (NIPU) using CO₂ and alcohol as feedstock

Catalyst CeO₂ with other transition metals doping to enhance the activity of the catalyst

Catalyst CeO₂ without metal doping

Catalyst CeO₂ with metal doping

The particle catalyst size increases 2 - 5 times with addition of other transition metals

CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any 0ther person.

CO₂ **Biocapture**

Algae and forests have great potential in the reduction of CO_2 emissions

Planted species	Removal rate	
Forest (<i>Eucalyptus</i>)	38.0 – 40.7 t CO ₂ /ha/year	
Forest (<i>Pine</i>)	10.2 – 21.1 t CO ₂ /ha/year	
Mangrove tree restoration	Up to 23.1 t CO ₂ /ha/year ^a	
Algae dry material (C. vulgaris)	1.6 – 2 kg CO ₂ /kg/year ^b	

For forest during the first 20 years of growth

www.pertamina.com

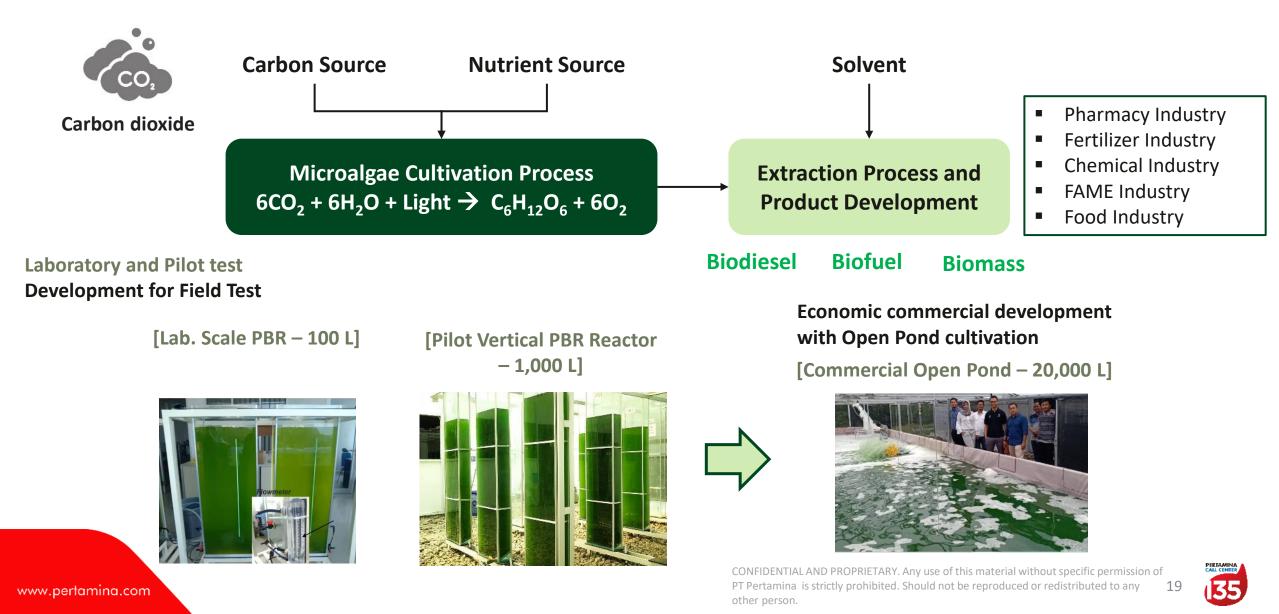
Planting woodland to remove CO₂ from the atmosphere, known as woodland carbon capture, **is a cost-effective way of compensating for emissions** while also providing many other social and environmental benefits

Growth Parameters for Microalgae

Species	CO ₂ (%)	Features ^c
Chlorococcum sp	8	High CO ₂ fixation rate Densely culturable
Chorella sp	Up to 60	High growth ability, High temperature tolerance
Euglena gracilis	Up to 100	High amino acid content, Good digestibility (effective fodder) Grows well under acidic conditions, not easily contaminated
Galdieria sp	Up to 100	High CO ₂ tolerance
Synechococcus lividus	Up to 70	High pH tolerance

Source:

[a] Bernal et al. (2018): Global carbon dioxide removal rates from forest landscape restoration activities


[b] Carlsson et al. : Micro-and Macro-Algae: Utility for Industrial Applications [c] The Comprehensive Guide for Algae – based Carbon Capture (www.oigae.com) CONFIDENTIAL AND PROPRIETARY. Any use of this material without specific permission of PT Pertamina is strictly prohibited. Should not be reproduced or redistributed to any other person.

CO₂ **Biocapture and Utilization using Microalgae**

Specific algae strains will be tested in CO₂ concentrated carbon source

Key Takeaways Development for Decarbonization

Robust legal and regulatory frameworks are needed to facilitate the development of CCUS to provide project developers and financiers with certainty and confidence to invest in green and low carbon projects. They will also play a key role in ensuring the protection of public health and the environment

Support from the government

- Research funding/grant by Indonesia
- Endowment Fund for Education (LPDP) and
- Ministry of Education and Culture
- Super tax deduction for decarbonization
 - research by Ministry of Finance
 - Carbon Economy Value (NEK) by Ministry of
 - Environment and Forestry
- Regulations for implementing CCS/CCUS by

Ministry of Energy and Mineral Resources

Collaboration and partnership opportunity

- Green financing and softloan
- Partnership to share project cost and benefit, sharing risk and to build required technology capability
- Carbon trading program
- Technology improvement and optimization to reduce
 Capex & Opex
- Creating CCUS market and stakeholders acceptance

The appropriate policy mix will depend on local market conditions and institutional factors, as well as the stage of technology development in the sector or application

EXISTING

:UTURE

THANK YOU

"Mewujudkan Ketahanan, Kemandirian, & Kedaulatan Energi untuk Indonesia"

Ketulusan untuk Melayani

